Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Biosens Bioelectron ; 257: 116301, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663322

RESUMO

Efficient tools for rapid antibiotic susceptibility testing (AST) are crucial for appropriate use of antibiotics, especially colistin, which is now often considered a last resort therapy with extremely drug resistant Gram-negative bacteria. Here, we developed a rapid, easy and miniaturized colistin susceptibility assay based on microfluidics, which allows for culture and high-throughput analysis of bacterial samples. Specifically, a simple microfluidic platform that can easily be operated was designed to encapsulate bacteria in nanoliter droplets and perform a fast and automated bacterial growth detection in 2 h, using standardized samples. Direct bright-field imaging of compartmentalized samples proved to be a faster and more accurate detection method as compared to fluorescence-based analysis. A deep learning powered approach was implemented for the sensitive detection of the growth of several strains in droplets. The DropDeepL AST method (Droplet and Deep learning-based method for AST) developed here allowed the determination of the colistin susceptibility profiles of 21 fast-growing Enterobacterales (E. coli and K. pneumoniae), including clinical isolates with different resistance mechanisms, showing 100 % categorical agreement with the reference broth microdilution (BMD) method performed simultaneously. Direct AST of bacteria in urine samples on chip also provided accurate results in 2 h, without the need of complex sample preparation procedures. This method can easily be implemented in clinical microbiology laboratories, and has the potential to be adapted to a variety of antibiotics, especially for last-line antibiotics to optimize treatment of patients infected with multi-drug resistant strains.

3.
Microorganisms ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543576

RESUMO

Abscesses represent the most prominent emerging problem in the red meat industry, leading to great economic constraints and public health hazards. Data on etiological agents present in these purulent lesions in Algeria are very scarce. The aim of this study was to identify the bacteria responsible for these abscesses and to determine their antibiotic susceptibility profiles. A total of 123 samples of abscesses from 100 slaughtered sheep and 23 slaughtered cattle were cultured in several media. A total of 114 bacterial isolates were cultured from 103 abscesses. Bacteria were identified using MALDI-TOF, and antibiotic susceptibility was determined by the disk diffusion method on Mueller-Hinton agar. A total of 73.6% (n = 84) corresponded to Enterobacterales, of which four were multidrug-resistant (MDR). These isolates, together with Staphylococcus aureus, coagulase negative Staphylococci, and seven randomly chosen susceptible Escherichia coli isolates, were further characterized using WGS. Resistome analysis of the four MDR Enterobacterales isolates revealed the presence of OXA-48 carbapenemase in two Klebsiella pneumoniae ST985 and one E. coli ST10 isolates and a CTX-M-15 ESBL in one E. coli isolate ST1706. Two coagulase-negative Staphylococci isolates were found to carry the mecA gene. WGS showed the presence of different resistance genes and virulence genes. Our study revealed 5% of MDR Enterobacterales (including ESBLs and carbapenemases) identified from abscesses, thus urging the need for abscess monitoring in slaughterhouses.

4.
JAC Antimicrob Resist ; 6(2): dlae029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38455379

RESUMO

Objectives: A multicentre study evaluating NG-Test DetecTool OXA-23 for the detection of OXA-23 carbapenemase directly from positive blood cultures (PBCs). Methods: The NG-Test DetecTool OXA-23 is an immunoassay that integrates a sample preparation device. We evaluated NG-Test DetecTool OXA-23 on 189 spiked and 126 clinical PBCs. The clinical samples' standard-of-care procedure consisted of bacterial identification from the first day of positivity by MALDI-TOF MS, conventional culture and antimicrobial susceptibility testing. The immunoassay results were verified molecularly. The strains used for the spiked samples consisted of well-characterized Acinetobacter baumannii and Proteus mirabilis strains. Results: The NG-Test DetecTool OXA-23 was evaluated on 315 PBCs and revealed sensitivity of 100% (95% CI: 98.21%-100.00%) and specificity of 100% (95% CI: 96.73%-100.00%). It provided 204 true-positive results for OXA-23 in 196 bottles with carbapenem-resistant A. baumannii (CRAB) and 8 bottles with carbapenem-resistant P. mirabilis and also provided 111 true-negative results. There were no false-positive and no false-negative results. Among the 315 PBCs studied, 83 clinical blood cultures collected in the ICU of a Greek university hospital, which were tested prospectively, all yielded CRAB, and OXA-23 was correctly detected in all samples from the first day of positivity using the NG-Test DetecTool OXA-23. Conclusions: The NG-Test DetecTool OXA-23 has exhibited excellent sensitivity and specificity for OXA-23 detection in PBCs and can provide valuable information for appropriate selection of antibiotic therapy and early implementation of infection control measures.

5.
Antimicrob Agents Chemother ; : e0018024, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526049

RESUMO

OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the ß5-ß6 loop, but interacting with key residues of it.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38501366

RESUMO

BACKGROUND: VRE are increasingly described worldwide. Screening of hospitalized patients at risk for VRE carriage is mandatory to control their dissemination. Here, we have developed the Bfast [VRE Panel] PCR kit, a rapid and reliable quantitative PCR assay for detection of vanA, vanB, vanD and vanM genes, from solid and liquid cultures adaptable to classical and ultrafast real-time PCR platforms. METHODS: Validation was carried out on 133 well characterized bacterial strains, including 108 enterococci of which 64 were VRE. Analytical performances were determined on the CFX96 Touch (Bio-Rad) and Chronos Dx (BforCure), an ultrafast qPCR machine. Widely used culture plates and broths for enterococci selection/growth were tested. RESULTS: All targeted van alleles (A, B, D and M) were correctly detected without cross-reactivity with other van genes (C, E, G, L and N) and no interference with the different routinely used culture media. A specificity and sensitivity of 100% and 99.7%, respectively, were determined, with limits of detection ranging from 21 to 238 cfu/reaction depending on the targets. The Bfast [VRE Panel] PCR kit worked equally well on the CFX and Chronos Dx platforms, with differences in multiplexing capacities (five and four optical channels, respectively) and in turnaround time (45 and 16 minutes, respectively). CONCLUSIONS: The Bfast [VRE Panel] PCR kit is robust, easy to use, rapid and easily implementable in clinical microbiology laboratories for ultra-rapid confirmation of the four main acquired van genes. Its features, especially on Chronos Dx, seem to be unmatched compared to other tools for screening of VRE.

8.
J Clin Microbiol ; 62(3): e0113623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319119

RESUMO

Antimicrobial resistance (AMR) is one of the major public health problems worldwide. Multiple strategies have been put in place to address this problem. One of them is the rapid detection of the mechanisms of resistance, such as extended-spectrum beta-lactamases (ESBLs) and/or carbapenemases. We conducted a multicenter study that included nine European centers for the assessment of prototypes of a novel lateral flow immunoassay-based device (BL-DetecTool) for a rapid detection of ESBL (NG-Test CTX-M-MULTI DetecTool) and/or carbapenemases (NG-Test CARBA 5 DetecTool) from Enterobacterales and Pseudomonas aeruginosa in positive urine, positive blood cultures, and rectal swabs. We performed a prospective analysis between January 2021 and June 2022, including overall 22,010 samples. Based on each hospital information, the sensitivity to detect CTX-M was 84%-100%, 90.9%-100%, and 75%-100% for urine, positive blood cultures, and enriched rectal swabs, respectively. On the other hand, the sensitivity to detect carbapenemases was 42.8%-100%, 75%-100%, and 66.6%-100% for urine, positive blood cultures, and enriched rectal swab, respectively. BL-DetecTool allows a rapid and reliable detection of ESBL and carbapenemases directly from urine, positive blood cultures, or enriched rectal swabs, being an easy technique to implement in the workflow of clinical microbiology laboratories. IMPORTANCE: The assessed rapid assay to detect CTX-M beta-lactamases and carbapenemases directly from clinical samples can favor in the rapid detection of these mechanisms of resistance and hence the administration of a more adequate antimicrobial treatment.


Assuntos
Anti-Infecciosos , beta-Lactamases , Humanos , beta-Lactamases/análise , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos
11.
J Glob Antimicrob Resist ; 36: 59-61, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128725

RESUMO

OBJECTIVES: In-depth phenotypic and genomic analyses on a carbapenem-resistant Escherichia coli isolate, recovered from the faeces of a farm dog in Lebanon, focusing on its antimicrobial resistance (AMR) patterns and the underlying resistome. METHODS: E. coli strain EC-106 was identified using MALDI-TOF-MS. Analyses using Carba NP, immunochromatographic assay NG Carba5, and other antimicrobial susceptibility testing were performed. Whole-genome sequencing (WGS) using the Illumina technology and different software available at the Center of Genomic Epidemiology wwere used to predict the resistome, sequence type (ST), plasmid types, and virulence genes. RESULTS: Susceptibility testing revealed that E. coli EC-106 was multi-drug resistant, including against newer antimicrobials such as imipenem-relebactam (MIC = 16 µg/mL), meropenem-vaborbactam (MIC = 16 µg/mL), and ceftazidime-avibactam (MIC > 32 µg/mL), but remained susceptible to aztreonam (MIC = 0.12 µg/mL), aztreonam-avibactam (MIC = 0.06 µg/mL), and cefiderocol (MIC = 0.5 µg/mL). WGS analyses showed that E. coli EC-106 carried 13 acquired resistance genes associated with resistance to ß-lactams (blaNDM-5 and blaTEM-1B), aminoglycosides (aac(3)-IId, aph(3')-Ia, aadA1, and aadA2), tetracyclines (tetA), amphenicols (partial catA1), macrolides (mphA), sulphonamides (sul1 and sul3), trimethoprim (dfrA12), and quaternary ammonium compounds (partial qacE). The blaNDM-5 was located on an IncX3 plasmid. The isolate was predicted to be a human pathogen (92.9%) and belonged to ST1011. CONCLUSION: To our knowledge, this is the first report of the detection of an IncX3 plasmid carrying the blaNDM-5 gene in animals in Lebanon, highlighting the severe AMR challenges in the country. Taken together, our current and previous findings suggest that blaNDM-5 might be spreading in different hosts and genetic backgrounds across clinical and non-clinical settings.


Assuntos
Proteínas de Bactérias , Infecções por Escherichia coli , Escherichia coli , beta-Lactamases , Cães , Humanos , Animais , Aztreonam/farmacologia , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Antibacterianos/farmacologia
12.
J Glob Antimicrob Resist ; 36: 175-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154747

RESUMO

OBJECTIVES: The contamination of fresh surface waters poses a significant burden on human health and prosperity, especially in marginalized communities with limited resources and inadequate infrastructure. Here, we performed in-depth genomic analyses of multidrug-resistant bacteria (MDR-B) isolated from Al-Oueik river water that is used for irrigation of agricultural fields in a disenfranchised area that also hosts a makeshift Syrian refugee camp. METHODS: A composite freshwater sample was filtered. Faecal coliforms were counted and extended spectrum cephalosporins and/or ertapenem resistant bacteria were screened. Isolates were identified using MALDI-TOF-MS and analysed using whole-genome sequencing (WGS) to identify the resistome, sequence types, plasmid types, and virulence genes. RESULTS: Approximately 106 CFU/100 mL of faecal coliforms were detected in the water. Four drug-resistant Gram-negative bacteria were identified, namely Escherichia coli, Klebsiella pneumoniae, Enterobacter hormaechei, and Pseudomonas otitidis. Notably, the E. coli isolate harboured blaNDM-5 and a YRIN-inserted PBP3, representing an emerging public health challenge. The K. pneumoniae isolate carried blaSHV-187 as well as mutations in the gene encoding the OmpK37 porin. Enterobacter hormaechei and P. otitidis harboured blaACT-16 and blaPOM-1, respectively. CONCLUSION: This report provides comprehensive genomic analyses of MDR-B in irrigation water in Lebanon. Our results further support that irrigation water contaminated with faecal material can be a reservoir of important MDR-B, which can spread to adjacent agricultural fields and other water bodies, posing both public health and food safety issues. Therefore, there is an urgent need to implement effective water quality monitoring and management programs to control the proliferation of antibiotic-resistant pathogens in irrigation water in Lebanon.


Assuntos
Escherichia coli , Rios , Humanos , Escherichia coli/genética , Rios/microbiologia , Enterobacter/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Bactérias Gram-Negativas
13.
Clin Microbiol Infect ; 30(4): 469-480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160753

RESUMO

SCOPE: Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen considered one of the paradigms of antimicrobial resistance, is among the main causes of hospital-acquired and chronic infections associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of P. aeruginosa to develop antimicrobial resistance through chromosomal mutations, the increasing prevalence of transferable resistance determinants (such as the carbapenemases and the extended-spectrum ß-lactamases), and the global expansion of epidemic lineages. The general objective of this initiative is to provide a comprehensive update of P. aeruginosa resistance mechanisms, especially for the extensively drug-resistant (XDR)/difficult-to-treat resistance (DTR) international high-risk epidemic lineages, and how the recently approved ß-lactams and ß-lactam/ß-lactamase inhibitor combinations may affect resistance mechanisms and the definition of susceptibility profiles. METHODS: To address this challenge, the European Study Group for Antimicrobial Resistance Surveillance (ESGARS) from the European Society of Clinical Microbiology and Infectious Diseases launched the 'Improving Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in Europe (ISARPAE)' initiative in 2022, supported by the Joint programming initiative on antimicrobial resistance network call and included a panel of over 40 researchers from 18 European Countries. Thus, a ESGARS-ISARPAE position paper was designed and the final version agreed after four rounds of revision and discussion by all panel members. QUESTIONS ADDRESSED IN THE POSITION PAPER: To provide an update on (a) the emerging resistance mechanisms to classical and novel anti-pseudomonal agents, with a particular focus on ß-lactams, (b) the susceptibility profiles associated with the most relevant ß-lactam resistance mechanisms, (c) the impact of the novel agents and resistance mechanisms on the definitions of resistance profiles, and (d) the globally expanding XDR/DTR high-risk lineages and their association with transferable resistance mechanisms. IMPLICATION: The evidence presented herein can be used for coordinated epidemiological surveillance and decision making at the European and global level.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas , Pseudomonas aeruginosa/genética , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Testes de Sensibilidade Microbiana
14.
Front Public Health ; 11: 1290912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074718

RESUMO

Background: Carbapenem- and extended-spectrum cephalosporin-resistant Enterobacterales (CR-E and ESCR-E, respectively) are increasingly isolated worldwide. Information about these bacteria is sporadic in Lebanon and generally relies on conventional diagnostic methods, which is detrimental for a country that is struggling with an unprecedented economic crisis and a collapsing public health system. Here, CR-E isolates from different Lebanese hospitals were characterized. Materials and methods: Non-duplicate clinical ESCR-E or CR-E isolates (N = 188) were collected from three hospitals from June 2019 to December 2020. Isolates were identified by MALDI-TOF, and their antibiotic susceptibility by Kirby-Bauer disk diffusion assay. CR-E isolates (n = 33/188) were further analyzed using Illumina-based WGS to identify resistome, MLST, and plasmid types. Additionally, the genetic relatedness of the CR-E isolates was evaluated using an Infrared Biotyper system and compared to WGS. Results: Using the Kirby-Bauer disk diffusion assay, only 90 isolates out of the 188 isolates that were collected based on their initial routine susceptibility profile by the three participating hospitals could be confirmed as ESCR-E or CR-E isolates and were included in this study. This collection comprised E. coli (n = 70; 77.8%), K. pneumoniae (n = 13; 14.4%), Enterobacter spp. (n = 6; 6.7%), and Proteus mirabilis (n = 1; 1.1%). While 57 were only ESBL producers the remaining 33 isolates (i.e., 26 E. coli, five K. pneumoniae, one E. cloacae, and one Enterobacter hormaechei) were resistant to at least one carbapenem, of which 20 were also ESBL-producers. Among the 33 CR-E, five different carbapenemase determinants were identified: blaNDM-5 (14/33), blaOXA-244 (10/33), blaOXA-48 (5/33), blaNDM-1 (3/33), and blaOXA-181 (1/33) genes. Notably, 20 CR-E isolates were also ESBL-producers. The analysis of the genetic relatedness revealed a substantial genetic diversity among CR-E isolates, suggesting evolution and transmission from various sources. Conclusion: This study highlighted the emergence and broad dissemination of blaNDM-5 and blaOXA-244 genes in Lebanese clinical settings. The weak AMR awareness in the Lebanese community and the ongoing economic and healthcare challenges have spurred self-medication practices. Our findings highlight an urgent need for transformative approaches to combat antimicrobial resistance in both community and hospital settings.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Líbano , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Hospitais , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia
15.
BMC Microbiol ; 23(1): 376, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036965

RESUMO

BACKGROUND: The fecal carriage of extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-PE) is a major driver of the global spread of these antibiotic resistance determinants. Here we determined the rate of fecal ESBL-PE carriage in pediatric hospitals and community-serving healthcare centers serving adults and children in the Gaza Strip, Palestine. METHODS: A total of 373 fecal and rectal samples were collected from different hospitals and clinics in Gaza. The antibiotic susceptibility was determined using the disk diffusion method and interpreted according to CLSI guidelines. The bacterial isolates were tested for ESBL production using phenotypic methods (double disk synergy test and growth on selective chromogenic media). BlaCTX-M, blaSHV, and blaTEM genes were sought by PCR. RESULTS: Out of the 373 isolates tested, 138 (37%) were considered ESBL positive as revealed by phenotypic tests. The prevalence of ESBLs among hospitalized patients was 39.1% (hospital setting) whereas, among outpatients attending community healthcare centers, it was 35.1% (community setting). ESBL production among Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, Proteus mirabilis, and Klebsiella aerogenes isolates was 52.8%, 39.1%, 26.7%, 2.8%, and 2.1% respectively. Meropenem and amikacin were the most effective antibiotics against ESBL producers (68.9% and 73.6% susceptibility, respectively), while only 15.2%, 22.5%, and 24.6% remained susceptible to ceftazidime, cefotaxime, and ceftriaxone, respectively. Out of 138 phenotypically ESBL-positive isolates, 98 randomly chosen were screened for blaCTX-M, blaTEM, and blaSHV genes. The prevalence rate of blaCTX-M was 45.9%, while blaTEM and blaSHV genes were detected in 16.8% and 5.2% of CTX-M-negative isolates (corresponding mostly for K. pneumoniae isolates in the case of SHV-PCR), respectively. CONCLUSIONS: The study revealed an alarmingly high prevalence of fecal carriage of ESBL-producing Enterobacterales among hospitalized children but also in the community of the Gaza Strip. In addition, 30% of ESBL-producers were already resistant to carbapenems, the treatment of choice of infections with ESBL-producers.


Assuntos
Escherichia coli , beta-Lactamases , Criança , Adulto , Humanos , beta-Lactamases/genética , Escherichia coli/genética , Hospitais , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Oriente Médio/epidemiologia , Testes de Sensibilidade Microbiana
16.
mSphere ; 8(6): e0036623, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815363

RESUMO

IMPORTANCE: The emergence of carbapenemase producers in Enterobacterales mostly involves Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae complex species. However, in France, we observed the emergence and the rapid dissemination of carbapenemase in Citrobacter spp. In this study, we demonstrated that a wide variety of carbapenemases is produced by many different species of Citrobacter spp. However, we clearly identify three high-risk clones of Citrobacter freundii, ST8, ST22, and ST91 that drive the spread of carbapenemase in France. This epidemiological study paves the way of further analysis that would aim to identify the virulence factors involved in this pellicular ability of these three clones to disseminate at the hospital.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Epidemiologia Molecular , Infecções por Enterobacteriaceae/epidemiologia , Proteínas de Bactérias/genética , Citrobacter/genética , Escherichia coli
17.
Euro Surveill ; 28(42)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855905

RESUMO

BackgroundSince 2021, an emergence of New Delhi metallo-ß-lactamase (NDM)-14-producing Klebsiella pneumoniae has been identified in France. This variant with increased carbapenemase activity was not previously detected in Enterobacterales.AimWe investigated the rapid dissemination of NDM-14 producers among patients in hospitals in France.MethodsAll NDM-14-producing non-duplicate clinical isolates identified in France until June 2022 (n = 37) were analysed by whole genome sequencing. The phylogeny of NDM-14-producers among all K. pneumoniae sequence type (ST) 147 reported in France since 2014 (n = 431) was performed. Antimicrobial susceptibility testing, conjugation experiments, clonal relationship and molecular clock analysis were performed.ResultsThe 37 NDM-14 producers recovered in France until 2022 belonged to K. pneumoniae ST147. The dissemination of NDM-14-producing K. pneumoniae was linked to a single clone, likely imported from Morocco and responsible for several outbreaks in France. The gene bla NDM-14 was harboured on a 54 kilobase non-conjugative IncFIB plasmid that shared high homology with a known bla NDM-1-carrying plasmid. Using Bayesian analysis, we estimated that the NDM-14-producing K. pneumoniae ST147 clone appeared in 2020. The evolutionary rate of this clone was estimated to 5.61 single nucleotide polymorphisms per genome per year. The NDM-14 producers were highly resistant to all antimicrobials tested except to colistin, cefiderocol (minimum inhibitory concentration 2 mg/L) and the combination of aztreonam/avibactam.ConclusionHighly resistant NDM-14 producing K. pneumoniae can rapidly spread in healthcare settings. Surveillance and thorough investigations of hospital outbreaks are critical to evaluate and limit the dissemination of this clone.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Teorema de Bayes , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana
18.
Front Microbiol ; 14: 1253160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700870

RESUMO

Here, we characterized the first French NDM-9-producing Acinetobacter baumannii isolate. A. baumannii 13A297, which belonged to the STPas25 (international clone IC7), was highly resistant to ß-lactams including cefiderocol (MIC >32 mg/L). Whole genome sequencing (WGS) using both Illumina and Oxford Nanopore technologies revealed a 166-kb non-conjugative plasmid harboring a blaNDM-9 gene embedded in a Tn125 composite transposon. Complementation of E. coli DH5α and A. baumannii CIP70.10 strains with the pABEC plasmid carrying the blaNDM-1 or blaNDM-9 gene, respectively, resulted in a significant increase in cefiderocol MIC values (16 to >256-fold), particularly in the NDM-9 transformants. Interestingly, steady-state kinetic parameters, measured using purified NDM-1 and NDM-9 (Glu152Lys) enzymes, revealed that the affinity for cefiderocol was 3-fold higher for NDM-9 (Km = 53 µM) than for NDM-1 (Km = 161 µM), leading to a 2-fold increase in catalytic efficiency for NDM-9 (0.13 and 0.069 µM-1.s-1, for NDM-9 and NDM-1, respectively). Finally, we showed by molecular docking experiments that the residue 152 of NDM-like enzymes plays a key role in cefiderocol binding and resistance, by allowing a strong ionic interaction between the Lys152 residue of NDM-9 with both the Asp223 residue of NDM-9 and the carboxylate group of the R1 substituent of cefiderocol.

19.
Expert Opin Ther Pat ; 33(7-8): 523-538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37737836

RESUMO

INTRODUCTION: Metallo-ß-lactamases (MBLs) are enzymes produced by bacteria that confer resistance to most ß-lactam antibiotics, including carbapenems, which have the broadest spectrum of activity. This resistance mechanism poses a significant threat to public health as it drastically reduces treatment options for severe bacterial infections. Developing effective inhibitors against MBLs is crucial to restore susceptibility to ß-lactam antibiotics. AREAS COVERED: This review aims to provide an updated analysis of patents describing novel MBL inhibitors and their potential therapeutic applications that were filed between January 2020 and May 2023. EXPERT OPINION: Significant advancements were made in the development of selective MBL inhibitors with zinc-binding and zinc-chelating mechanisms of action. Dual inhibitors, targeting simultaneously both serine-ß-lactamases (SBLs) and MBLs, represent an interesting alternative approach that is increasingly pertinent for the treatment of infections involving multiple ß-lactamases from different Ambler classes. Most examples of MBL-specific inhibitors were focused on the treatment of MBL-mediated infections in Enterobacterales, where IMP-1 was a more difficult target compared with VIM-1 or NDM-1, and much less on Pseudomonas aeruginosa or Acinetobacter baumannii, which are more challenging to address.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Patentes como Assunto , beta-Lactamases , Bactérias , Carbapenêmicos , Zinco , Testes de Sensibilidade Microbiana
20.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627685

RESUMO

The development of novel antibiotics is mandatory to curb the growing antibiotic resistance problem resulting in difficult-to-treat bacterial infections. Here, we have determined the spectrum of activity of cystobactamids and chelocardins, two novel and promising classes of molecules with different modes of action. A panel of 297 clinically relevant Gram-negative and Gram-positive isolates with different antibiotic susceptibility profiles, going from wild type to multi- or even extremely drug resistant (MDR, XDR) and including carbapenem-resistant isolates, were tested using broth microdilution assays to determine the minimal inhibitory concentrations (MICs), MIC50s and MIC90s of two cystobactamids derivatives (CN-861-2 and CN-DM-861) and two chelocardin derivatives (CHD and CDCHD). Cystobactamids revealed potent activities on the majority of tested Enterobacterales (MIC50s ranging from 0.25 to 4 µg/mL), except for Klebsiella pneumoniae isolates (MIC50s is 128 µg/mL). Pseudomonas aeruginosa and Acinetobacter baumannii showed slightly higher MIC50s (4 µg/mL and 8 µg/mL, respectively) for cystobactamids. Chelocardins inhibited the growth of Enterobacterales and Stenotrophomas maltophilia at low to moderate MICs (0.25-16 µg/mL) and the chemically modified CDCHD was active at lower MICs. A. baumannii and P. aeruginosa were less susceptible to these molecules with MICs ranging from 0.5 to 32 µg/mL. These molecules show also interesting in vitro efficacies on clinically relevant Gram-positive bacteria with MICs of 0.125-8 µg/mL for cystobactamids and 0.5-8 µg/mL for chelocardins. Taken together, the cystobactamid CN-DM-861 and chelocardin CDCHD showed interesting antibiotic activities on MDR or XDR bacteria, without cross-resistance to clinically relevant antibiotics such as carbapenems, fluoroquinolones, and colistin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...